Mo/B4C/Si multilayer-coated photodiode with polarization sensitivity at an extreme-ultraviolet wavelength of 13.5 nm.

نویسندگان

  • Benjawan Kjornrattanawanich
  • Sasa Bajt
  • John F Seely
چکیده

A silicon photodiode coated with an interface-engineered Mo/Si multilayer was developed as a polarization sensitive detector. The Mo/B4C/Si multilayer was designed to reflect 13.5-nm extreme-ultraviolet (EUV) radiation at an incident angle of 45 degrees, at which the maximum polarization sensitivity occurs. The sensitivity of this specially coated photodiode and its polarization responses were determined by measurement of the reflectance and transmittance of the multilayer coating with synchrotron radiation. The Mo/B4C/Si multilayer was found to reflect 69.9% of the s-polarized radiation and only 2.4% of the p-polarized radiation, thus transmitting approximately 0.2% s-polarized radiation and 8.4% p-polarized radiation at a 13.5-nm wavelength and a 45 degrees angle of incidence. A polarization ratio, (Tp - Ts)/(Tp + Ts), of 95% was achieved with sufficiently high sensitivity from this photodiode. This result demonstrates the high polarization sensitivity and the usefulness of multilayer-coated photodiodes as novel EUV polarimeters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared diffractive filtering for extreme ultraviolet multilayer Bragg reflectors.

We report on the development of a hybrid mirror realized by integrating an EUV-reflecting multilayer coating with a lamellar grating substrate. This hybrid mirror acts as an efficient Bragg reflector for extreme ultraviolet (EUV) radiation at a given wavelength while simultaneously providing spectral-selective suppression of the specular reflectance for unwanted longer-wavelength radiation due ...

متن کامل

Short-wavelength ablation of polymers in the high-fluence regime

Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror c...

متن کامل

Experimental comparison of extreme-ultraviolet multilayers for solar physics.

We compare the reflectance and stability of multilayers comprising either Si/Mo, Si/Mo2C, Si/B4C, Si/C, or Si/SiC bilayers, designed for use as extreme-ultraviolet (EUV) reflective coatings. The films were deposited by using magnetron sputtering and characterized by both x-ray and EUV reflectometry. We find that the new Si/SiC multilayer offers the greatest spectral selectivity at the longer wa...

متن کامل

Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers.

Scattering resulting from interface imperfections critically affects the image contrast and optical throughput of multilayer coatings for 13.5 nm. To investigate the scattering mechanisms, at-wavelength scattering measurements in combination with atomic force microscopy are analyzed for an in-depth characterization of the roughness properties. The different impacts of substrate finish and intri...

متن کامل

Lifetime Studies of Mo/Si and MO/Be Multilayer Coatings for Extreme Ultraviolet Lithography

Extreme Ultraviolet Lithography (EUVL) is a candidate for future application by the semiconductor industry in the production of sub-100 nm feature sizes in integrated circuits. Using multilayer reflective coatings optimized at wavelengths ranging from 11 to 14 nm, EUVL represents a potential successor to currently existing optical lithography techniques. In order to assess lifetimes of the mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 43 5  شماره 

صفحات  -

تاریخ انتشار 2004